Question Set

1. Transition from laminar flow to turbulent flow in fluid flow through a pipe does not depend upon the





Ask Your Doubts Here

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Show Similar Question And Answers
QA->The process of transfer of heat from one point of a fluid to another part of a fluid by the movement of fluid itself is called?....
QA->When a fluid passes through the constricted part of a pipe its?....
QA->The pressure at the bottom of a liquid tank does not depend on which area?....
QA->The escape velocity from the surface of the earth does not depend on which body?....
QA->The escape velocity from the surface of the earths does not depend on?....
MCQ->Transition from laminar flow to turbulent flow in fluid flow through a pipe does not depend upon the....
MCQ->The following statements relate to a laminar flow : 1. Laminar flow is rotational. 2. In laminar flow the loss of head is proportional to the square of the velocity. 3. In laminar flow the loss of head is proportional to the first power of viscosity. 4. In laminar flow the velocity is constant over the cross-section. 5. Other quantities remaining the same, increase in diameter will increase the Reynolds number in laminar flow. Of these statements :....
MCQ->Bernoulli's equation for fluid flow is derived following certain assumptions. Out of the assumptions listed below, which set of assumptions is used in derivation of Bernoulli's equation ? A. Fluid flow is frictionless & irrotational. B. Fluid flow is steady. C. Fluid flow is uniform & turbulent. D. Fluid is compressible. E. Fluid is incompressible.....
MCQ->For turbulent flow (NRe > 2100) of low viscosity fluid (μ > 20cp) in steel pipes, the optimum inside pipe diameter is given by(where, Q = fluid flow rate, ft3/sec.ρ = fluid density, lb/ft3 μ = fluid viscosity, centipoise Di = optimum inside pipe diameter, inches)....
MCQ->The pressure drop per unit length of pipe incurred by a fluid 'X' flowing through pipe is Δp. If another fluid 'Y' having both the specific gravity & density just double of that of fluid 'X', flows through the same pipe at the same flow rate/average velocity, then the pressure drop in this case will be....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use | Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions
Question ANSWER With Solution