1. Which of the following equations applies to the fluid flow through a packed bed for very large Reynolds number ?





Ask Your Doubts Here

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Show Similar Question And Answers
QA->The process of transfer of heat from one point of a fluid to another part of a fluid by the movement of fluid itself is called?....
QA->The district through which large number of rivers flow?....
QA->The district in Kerala through which maximum number of the rivers flow?....
QA->An application of bernoulli’s equation for fluid flow is found in?....
QA->Indian School of Mines and Applies Geology is located at?....
MCQ->Which of the following equations applies to the fluid flow through a packed bed for very large Reynolds number ?....
MCQ->Bernoulli's equation for fluid flow is derived following certain assumptions. Out of the assumptions listed below, which set of assumptions is used in derivation of Bernoulli's equation ? A. Fluid flow is frictionless & irrotational. B. Fluid flow is steady. C. Fluid flow is uniform & turbulent. D. Fluid is compressible. E. Fluid is incompressible.....
MCQ->A bed of spherical particles (specific gravity 2.5) of uniform size 1500 μm is 0.5 m in diameter and 0.5 m high. In packed bed state, the porosity may be taken as 0.4. Ergun's equation for the above fluid-particle system (in SI units) is given below : Δ P/L = 375 x 103 VOM + 10.94 x 106 V2OM (SI units) If water is to be used as the fluidising medium, in actual operation, the above bed has a height = 1 m. What is the porosity of the fluidised bed ?....
MCQ->Which of the following equations is valid for laminar flow of a fluid through packed bed?....
MCQ->The following statements relate to a laminar flow : 1. Laminar flow is rotational. 2. In laminar flow the loss of head is proportional to the square of the velocity. 3. In laminar flow the loss of head is proportional to the first power of viscosity. 4. In laminar flow the velocity is constant over the cross-section. 5. Other quantities remaining the same, increase in diameter will increase the Reynolds number in laminar flow. Of these statements :....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use | Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions
Question ANSWER With Solution