1. The "flying car" is a ride at an amusement park, which consists of a car having wheels that roll along a track mounted on a drum. Motion of the car is created by applying the car's brake, thereby gripping the car to the track and allowing it to move with a speed of vt = 3m/s. If the rider applies the brake when going from B to A and then releases it at the top of the drum, A, so that the car coasts freely down along the track to B ( = rad), determine the speed of the car at B and the normal reaction which the drum exerts on the car at B. The rider and car have a total mass of m = 250 kg and the center of mass of the car and rider moves along a circular path of radius r = 8 m.





Ask Your Doubts Here

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Show Similar Question And Answers
QA->Find the maximum velocity for the overturn of a car moving on a circular track of radius 100 m. The co-efficient of friction between the road and tyre is 0.2?....
QA->Who said ‘Climbing to the top demands strength; whether it is to the top of Mount Everest or to the top of your career’?....
QA->Soldiers on big guns mounted on wheels....
QA->If the distance S covered by a moving car in rectilinear motion with a speed v in time t is given by S=vt, then the car undergoes?....
QA->Wheels within wheels....
MCQ->The "flying car" is a ride at an amusement park, which consists of a car having wheels that roll along a track mounted on a drum. Motion of the car is created by applying the car's brake, thereby gripping the car to the track and allowing it to move with a speed of vt = 3m/s. If the rider applies the brake when going from B to A and then releases it at the top of the drum, A, so that the car coasts freely down along the track to B ( = rad), determine the speed of the car at B and the normal reaction which the drum exerts on the car at B. The rider and car have a total mass of m = 250 kg and the center of mass of the car and rider moves along a circular path of radius r = 8 m.....
MCQ->A tobbogan and rider have a total mass of 100 kg and travel down along the (smooth) slope defined by the equation y = 0.2x2. At the instant x = 8 m, the toboggan's speed is 4 m/s. At this point, determine the rate of increase in speed and the normal force which the toboggan exerts on the slope. Neglect the size of the toboggan and rider for the calculation.....
MCQ->The sports car has a mass of 1.5 Mg and a center of mass at G. Determine the shortest time it takes for it to reach a speed of 80 km/h, starting from rest, if the engine only drives the rear wheels, whereas the front wheels are free rolling. The coefficient of friction between the wheels and road is = 0.2. Neglect the mass of the wheels for the calculation.....
MCQ->A particle having a mass of 1.5 kg, moves along a three-dimensional path defined by the equations r = 94 + 3t) m, = (t2 + 2) rad, and z = (6 - t3) m, where t is in seconds, and the z-axis is vertical. Determine the r, , and z components of force which the path exerts on the particle when t = 2 s.....
MCQ->The dragster has a mass of 1.3 Mg and a center of mass at G. If a braking parachute is attached at C and provides a horizontal braking force FD, determine the maximum deceleration the dragster can have upon releasing the parachute without tipping the dragster over backwards (i.e., the normal force under the wheels and assume that the engine is disengaged so that the wheels are freely rolling.....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use | Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions