1. A car is equipped with a bumper B designed to absorb collisions. The bumper is mounted to the car using pieces of flexible tubing T. Upon collision with a rigid barrier A, a constant horizontal force F is developed which causes a car deceleration of 3g = 29.43 m/s2 (the highest safe deceleration for a passenger without a seatbelt). If the car and passenger have a total mass of 1.5 Mg and the car is initially coasting with a speed of 1.5 m/s, compute the magnitude of F needed to stop the car and the deformation x of the bumper tubing.





Ask Your Doubts Here

Type in
(Press Ctrl+g to toggle between English and the chosen language)

Comments

Show Similar Question And Answers
QA->For a body moving with constant speed in a horizontal circle; what remains constant?....
QA->For a body moving with constant speed in a horizontal circle, what remains constant?....
QA->If two bodies of different masses, initially at rest, are acted upon by the same force for the same time, then the both bodies acquire the same?....
QA->A metal which can absorb and stop radioactive radiations:?....
QA->Method of cultivating plants without using soil but by using nutrient solution?....
MCQ->A car is equipped with a bumper B designed to absorb collisions. The bumper is mounted to the car using pieces of flexible tubing T. Upon collision with a rigid barrier A, a constant horizontal force F is developed which causes a car deceleration of 3g = 29.43 m/s2 (the highest safe deceleration for a passenger without a seatbelt). If the car and passenger have a total mass of 1.5 Mg and the car is initially coasting with a speed of 1.5 m/s, compute the magnitude of F needed to stop the car and the deformation x of the bumper tubing.....
MCQ->A car having a mass of 2 Mg strikes a smooth, rigid sign post with an initial speed of 30 km/h. To stop the car, the front end horizontally deforms 0.2 m. If the car is free to roll during the collision, determine the average horizontal collision force causing the deformation.....
MCQ->The "flying car" is a ride at an amusement park, which consists of a car having wheels that roll along a track mounted on a drum. Motion of the car is created by applying the car's brake, thereby gripping the car to the track and allowing it to move with a speed of vt = 3m/s. If the rider applies the brake when going from B to A and then releases it at the top of the drum, A, so that the car coasts freely down along the track to B ( = rad), determine the speed of the car at B and the normal reaction which the drum exerts on the car at B. The rider and car have a total mass of m = 250 kg and the center of mass of the car and rider moves along a circular path of radius r = 8 m.....
MCQ->A car, assumed to be rigid and having a mass of 800 kg, strikes a barrel-barrier installation without the driver applying the brakes. From experiments, the magnitude of the force of resistance Fr, created by deforming the barrels successively, is shown as a function of vehicle penetration. If the car strikes the barrier traveling at Vc = 70 km/h, determine approximately the distance s to which the car penetrates the barrier.....
MCQ->How does a host on an Ethernet LAN know when to transmit after a collision has occurred? In a CSMA/CD collision domain, multiple stations can successfully transmit data simultaneously. In a CSMA/CD collision domain, stations must wait until the media is not in use before transmitting. You can improve the CSMA/CD network by adding more hubs. After a collision, the station that detected the collision has first priority to resend the lost data. After a collision, all stations run a random backoff algorithm. When the backoff delay period has expired, all stations have equal priority to transmit data.....
Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use | Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions