engineering-mechanics-kinematics-of-a-particle Related Question Answers

26. The boy throws a snowball such that it strikes the wall of the building at the maximum height of its trajectory. If it takes t = 1.5 s to travel from A to B, determine the velocity vA at which it was thrown, the angle of release , and the height h.





27. For a short time the missile moves along the parabolic path y = (18 - 2x2) km. If motion along the ground is measured as x = (4t - 3) km, where t is in seconds, determine the magnitudes of the missile's velocity and acceleration when t = 1 s.





28. A small metal particle passes downward through a fluid medium while being subjected to the attraction of a magnetic field such that its position is observed to be s = (15t3 - 3t) mm, where t is measured in seconds. Determine (a) the particle's displacement from t = 2 s to t = 4 s, and (b) the velocity and acceleration of the particle when t = 5 s.





29. A car is traveling at a speed of 80 ft/s when the brakes are suddenly applied, causing a constant deceleration of 10 ft/s2. Determine the time required to stop the car and the distance traveled before stopping.





30. A race car starting from rest moves along a straight track with an acceleration as shown in the graph (where for t 10 s, a = 8 m/s2). Determine the time t for the car to reach a speed of 50 m/s.





31. A two-stage missile is fired vertically from rest with an acceleration as shown in the graph. In 15 s the first stage A burns out and the second stage B ignites. How fast is the rocket moving and how far has it gone at t = 20 s? How fast is the missile moving and how far has it gone at t = 20 s?





32. The cylindrical cam C is held fixed while the rod AB and bearings E and F rotate about the vertical axis of the cam at a constant rate of = 4 rad/s. If the rod is free to slide through the bearings, determine the magnitudes of the velocity and acceleration of the guide D on the rod as a function of . The guide follows the groove in the cam, and the groove is defined by the equations r = 0.25 ft and z = (0.25 cos ) ft.




33. If the hoist H is moving upward at 6 ft/s, determine the speed at which the motor M must draw in the supporting cable.





34. A package is dropped from the plane which is flying with a constant horizontal velocity of vA = 150 ft/s at a height h = 1500 ft. Determine the radius of curvature of the path of the package just after it is released from plane at A.





Terms And Service:We do not guarantee the accuracy of available data ..We Provide Information On Public Data.. Please consult an expert before using this data for commercial or personal use | Powered By:Omega Web Solutions
© 2002-2017 Omega Education PVT LTD...Privacy | Terms And Conditions
Question ANSWER With Solution